
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
INTEGRATING A TRUSTED COMPUTING BASE

EXTENSION SERVER AND SECURE SESSION
SERVER INTO THE LINUX OPERATING

SYSTEM

by

Mark V. Glover

September 2001

 Thesis Advisor: Cynthia E. Irvine
 Associate Advisor: David Shifflett

Approved for public release; distribution is unlimited.

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Integrating a Trusted Computing Base Extension Server
and Secure Session Server into the Linux Operating
System.

Contract Number

Grant Number

Program Element Number

Author(s)
Glover, Mark V.

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey,
Ca 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
84

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Integrating a Trusted Computing Base Extension Server and Secure
Session Server into the Linux Operating System.

5. FUNDING NUMBERS

6. AUTHOR(S) Glover, Mark V.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
 ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
The Multilevel Secure Local Area Network (MLS LAN) Project at the Naval Postgraduate School’s, Center for
Information Security (INFOSEC) Studies and Research (NPS CISR) is building a trusted network system that is both
necessary and sufficient to provide a multilevel networking solution for real world use. The current configuration
provides the necessary trusted network services on the TCSEC Class B-3 evaluated XTS-300, which is a combination of
the STOP version 4.4.2 multilevel secure operating system, and a Wang-supplied Intel x86 hardware base. The interface
for the STOP operating is based on the System V.3 UNIX implementation.
System V.3 lacks many of features available in more modern UNIX implementations such as System V.4 and BSD 4.3,
and also lacks many of the features in POSIX and ANSI C standards. Finally, the CPU is several generations older than
the more current Intel processors. This thesis discusses the port of several MLS trusted network services on the XTS-
300 to a Linux operating system running on an Intel Pentium Processor. The new Linux TCB Server configuration will
permit further experimentation with MLS architectural issues in a more modern, flexible and easily modifiable
environment.
The port was accomplished by identifying and modifying the necessary software modules needed, to adapt to a Linux
environment.
This thesis proves that XTS-300 TCB services can be ported to Linux system without any negative effects on
performance thus allowing a move toward a more security enhanced implementation.

14. SUBJECT TERMS
Multilevel Secure Local Area Network (MLS LAN) Project, Trusted Computing Base,
Trusted Computing Base Extension, Linux, XTS-300, IPSEC, Trusted Path, API

15. NUMBER OF PAGES
65

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18 298-102

 ii

 iiii

 iivv

AABBSSTTRRAACCTT

The Multilevel Secure Local Area Network (MLS LAN) Project at the Naval

Postgraduate School’s, Center for Information Security (INFOSEC) Studies and Research

(NPS CISR) is building a trusted network system that is both necessary and sufficient to

provide a multilevel networking solution for real world use. The current configuration

provides the necessary trusted network services on the TCSEC Class B-3 evaluated XTS-

300, which is a combination of the STOP version 4.4.2 multilevel secure operating

system, and a Wang-supplied Intel x86 hardware base. The interface for the STOP

operating is based on the System V.3 UNIX implementation.

System V.3 lacks many of features available in more modern UNIX

implementations such as System V.4 and BSD 4.3, and also lacks many of the features in

POSIX and ANSI C standards. Finally, the CPU is several generations older than the

more current Intel processors. This thesis discusses the port of several MLS trusted

network services on the XTS-300 to a Linux operating system running on an Intel

Pentium Processor. The new Linux TCBE Server configuration will permit further

experimentation with MLS architectural issues in a more modern, flexible and easily

modifiable environment.

The port was accomplished by identifying and modifying the necessary software

modules needed, to adapt to a Linux environment.

This thesis proves that XTS-300 TCB services can be ported to Linux system

without any negative effects on performance thus allowing a move toward a more

security enhanced implementation.

 vv

 vvii

TTAABBLLEE OOFF CCOONNTTEENNTTSS

II.. IINNTTRROODDUUCCTTIIOONN.. 11

AA.. BBAACCKKGGRROOUUNNDD.. 11

11.. PPuurrppoossee .. 11

22.. PPrroojjeecctt OOvveerrvviieeww.. 22

33.. MMLLSS LLAANN PPrroojjeecctt GGooaallss .. 33

44.. TThheessiiss GGooaallss .. 33

55.. AAddvvaannttaaggeess ooff LLiinnuuxx vvss.. tthhee XXTTSS--330000.. 44

aa.. CCaappaabbiilliitteess .. 44

bb.. LLiinnuuxx iiss RReeaaddiillyy AAvvaaiillaabbllee.. 55

cc.. UUssaabbiilliittyy .. 66

dd.. PPoorrttaabbiilliittyy .. 66

ee.. EEccoonnoommiicc BBeenneeffiittss .. 77

6. Disadvantages of Linux vs. XTS-300 .. 77

7. Methodology .. 77

BB.. CCHHAAPPTTEERR OOVVEERRVVIIEEWW .. 88

11.. IInnttrroodduuccttiioonn .. 88

22.. TThhee XXTTSS--330000 aanndd LLiinnuuxx SSyysstteemm AArrcchhiitteeccttuurreess .. 88

aa.. XXTTSS--330000 .. 88

bb.. LLiinnuuxx .. 99

33.. XXTTSS--330000 aanndd LLiinnuuxx PPoorrttiinngg EEnnvviirroonnmmeennttss .. 99

44.. PPoorrtteedd MMeecchhaanniissmmss .. 1100

 vviiii

55.. SSoouurrccee CCooddee TTrraannssffoorrmmss ttoo tthhee LLiinnuuxx EEnnvviirroonnmmeenntt .. 1100

66.. RReessuullttss aanndd RReeccoommmmeennddaattiioonnss.. 1100

CC.. AAPPPPEENNDDIIXX OOVVEERRVVIIEEWW.. 1100

11.. AAppppeennddiixx AA:: GGlloossssaarryy ooff TTeerrmmss .. 1100

IIII.. TTHHEE XXTTSS--330000 AANNDD LLIINNUUXX SSEECCUURRIITTYY AANNDD MMAAJJOORR CCOOMMPPNNEENNTTSS 1111

AA.. BBAACCKKGGRROOUUNNDD.. 1111

BB.. DDIISSCCRREETTIIOONNAARRYY AACCCCEESSSS CCOONNTTRROOLL PPOOLLIICCYY .. 1111

CC.. MMAANNDDAATTOORRYY AACCCCEESSSS CCOONNTTRROOLL PPOOLLIICCYY .. 1122

DD.. TTRRUUSSTTEEDD PPAATTHH .. 1133

EE.. XXTTSS--330000 CCOOMMPPOONNEENNTTSS .. 1144

11.. IInnttrroodduuccttiioonn .. 1144

22.. PPrriimmaarryy SSooffttwwaarree CCoommppoonneennttss .. 1155

33.. HHaarrddwwaarree AAbbssttrraaccttiioonn .. 1155

44.. SSeeccuurriittyy PPoolliiccyy .. 1166

aa.. XXTTSS--330000 MMAACC .. 1166

bb.. XXTTSS--330000 DDAACC.. 1177

FF.. LLIINNUUXX CCOOMMPPOONNEENNTTSS .. 1188

11.. IInnttrroodduuccttiioonn .. 1188

22.. PPrriimmaarryy SSooffttwwaarree CCoommppoonneennttss .. 1188

33.. HHaarrddwwaarree AAbbssttrraaccttiioonn .. 1199

44.. SSeeccuurriittyy PPoolliiccyy .. 2200

GG.. SSUUMMMMAARRYY .. 2211

IIIIII.. XXTTSS--330000 AANNDD LLIINNUUXX PPOORRTTIINNGG EENNVVIIRROONNMMEENNTTSS .. 2233

 vviiiiii

AA.. BBAACCKKGGRROOUUNNDD.. 2233

11.. LLiinnuuxx .. 2244

22.. XXTTSS--330000 .. 2255

BB.. PPOORRTTIINNGG MMOODDEELL .. 2255

CC.. CCOOMMPPAARRIISSOONNSS .. 2266

11.. LLiibbrraarriieess aanndd SSyysstteemm IInntteerrffaacceess .. 2266

22.. SSiiggnnaallss .. 2277

33.. SSyysstteemm VV IIPPCC .. 2288

aa.. SShhaarreedd MMeemmoorryy .. 2299

bb.. MMeessssaaggeess .. 2299

cc.. SSeemmaapphhoorreess .. 3300

44.. AAcccceessss CCoonnttrrooll .. 3300

55.. VVaarriiaabblleess.. 3300

66.. PPrroocceesssseess .. 3311

77.. NNeettwwoorrkkiinngg.. 3311

88.. RReeffeerreennccee aanndd DDeebbuugg FFiillee LLooccaattiioonnss .. 3311

DD.. SSUUMMMMAARRYY .. 3322

IIVV.. PPOORRTTEEDD MMEECCHHAANNIISSMMSS.. 3333

AA.. DDEESSCCRRIIPPTTIIOONN OOFF PPOORRTTEEDD SSEERRVVEERRSS.. 3333

11.. TTCCBB EExxtteennssiioonn SSeerrvveerr.. 3333

aa.. TTCCBB EExxtteennssiioonn SSeerrvveerr oonn LLiinnuuxx .. 3344

22.. SSeeccuurree SSeessssiioonn SSeerrvveerr ((SSSSSS)) .. 3344

aa.. SSeeccuurree SSeessssiioonn SSeerrvveerr iinn LLiinnuuxx.. 3355

 iixx

BB.. DDEESSCCRRIIPPTTIIOONN OOFF PPOORRTTEEDD DDAATTAABBAASSEESS.. 3366

11.. pprroottoo__lliisstt.. 3366

22.. ttccbbee__lliisstt .. 3377

33.. ppmmaapp__ddbb..ttxxtt .. 3377

CC.. SSUUMMMMAARRYY .. 3388

VV.. SSOOUURRCCEE CCOODDEE TTRRAANNSSFFOORRMMSS TTOO LLIINNUUXX EENNVVIIRROONNMMEENNTT .. 3399

AA.. IINNTTRROODDUUCCTTIIOONN.. 3399

BB.. CCOOMMPPIILLAATTIIOONN AANNDD LLIINNKK RREESSOOLLUUTTIIOONNSS.. 4400

11.. SSTTOOPP .. 4400

aa.. aaccccsseessss..hh .. 4400

bb.. MMeessssaaggee..hh .. 4400

cc.. lliimmiittss..hh.. 4411

dd.. ttccbb__ggaatteess..hh.. 4411

ee.. SSttddttyypp..hh .. 4411

22.. TTCCBB EExxtteennssiioonn SSeerrvveerr MMoodduullee .. 4411

aa.. MMaakkeeffiillee .. 4411

bb.. ttppss..cc .. 4422

cc.. ttppss__uuttiillcc.. .. 4433

33.. IINNCCLLUUDDEE .. 4433

aa.. lleevveell..hh .. 4433

bb.. uusseerrddbb..hh .. 4433

cc.. uuttiill..hh.. 4433

dd.. mmsseemm..hh .. 4444

 xx

ee.. ppmmaapp__ddbb..hh .. 4444

ff.. ppsskktt..hh .. 4444

gg.. sshhmm..hh .. 4444

hh.. aallww__ttccbbee..hh .. 4444

ii.. hhrrll__ddbb..hh .. 4444

44.. UUTTIILL MMoodduullee .. 4455

aa.. MMaakkeeffiillee .. 4455

bb.. bbuuffff__iioo..cc .. 4455

cc.. mmeennuu..cc .. 4455

dd.. mmsseemm..cc.. 4466

ee.. ppmmaapp__ddbb..cc .. 4466

ff.. ppsskktt..cc .. 4466

gg.. sshhmm..cc .. 4466

hh.. aallwwee__ttccbbee..cc .. 4466

ii.. pprriivv__uuttiill..cc .. 4466

jj.. uusseerr__ddbb..cc .. 4477

kk.. uusseerr__iiaa..cc.. 4477

ll.. uuttiill..cc.. 4477

55.. SSSSSS MMoodduullee.. 4477

aa.. MMaakkeeffiillee .. 4477

bb.. ssssss..cc .. 4488

cc.. ssssss__uuttiill..cc .. 4499

dd.. ssssdd..cc .. 5500

EE.. SSUUMMMMAARRYY .. 5511

 xxii

VVII.. CCOONNCCLLUUSSIIOONNSS AANNDD RREECCOOMMMMEENNDDAATTIIOONNSS.. 5533

AA.. SSUUMMMMAARRYY OOFF FFIINNDDIINNGGSS .. 5533

BB.. LLIINNUUXX SSEECCUURRIITTYY PPOOLLIICCYY EENNFFOORRCCEEMMEENNTT CCHHAALLLLEENNGGEESS.. 5544

CC.. PPEERRFFOORRMMAANNCCEE IISSSSUUEESS .. 5544

DD.. FFUUTTUURREE DDEESSIIGGNN CCOONNSSIIDDEERRAATTIIOONNSS .. 5555

11.. SSeeccuurriittyy EEnnaabblleedd LLiinnuuxx .. 5555

22.. IIPPSSEECC CCaappaabbiilliitteess .. 5566

EE.. CCOONNCCLLUUSSIIOONNSS .. 5566

AAPPPPEENNDDIIXX AA.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS .. 5577

LLIISSTT OOFF RREEFFEERREENNCCEESS .. 6611

IINNIITTIIAALL DDIISSTTRRIIBBUUTTIIOONN LLIISSTT.. 6633

 xxiiii

LLIISSTT OOFF FFIIGGUURREESS

FFiigguurree 11--11:: PPrrooppoosseedd SSyysstteemm AArrcchhiitteeccttuurree .. 33

FFiigguurree 22--11:: XXTTSS--330000 HHaarrddwwaarree AAbbssttrraaccttiioonn.. 1155

FFiigguurree 22--22:: LLiinnuuxx HHaarrddwwaarree DDeessiiggnn .. 2200

FFiigguurree 33--11:: PPoorrttiinngg MMooddeell .. 2266

FFiigguurree 55--11:: PPoorrttiinngg MMooddeell .. 4400

 xxiiiiii

 xxiivv

LLIISSTT OOFF TTAABBLLEESS

TTaabbllee 11--11:: HHaarrddwwaarree AArrcchhiitteeccttuurreess ssuuppppoorrtteedd bbyy LLiinnuuxx.. 55

TTaabbllee 22--11:: XXTTSS--330000 aanndd LLiinnuuxx AArrcchhiitteeccttuurreess.. 2222

TTaabbllee 33--11:: LLiinnuuxx aanndd XXTTSS--330000 SSiiggnnaall TTrraannssllaattiioonnss .. 2288

TTaabbllee 33--22:: XXTTSS--330000 aanndd LLiinnuuxx MMeessssaaggee TTrraannssllaattiioonnss .. 2299

TTaabbllee 33--33:: LLiinnuuxx aanndd XXTTSS--330000 PPoorrtt EEnnvviirroonnmmeennttss .. 3322

 xxvv

 xxvvii

 AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS

 First and foremost, I acknowledge my wife Anitra. Without your continued

encouragement and patience, this time at NPS would not have been as successful.

I wish to express my sincere appreciation to Professor Irvine and Dave Shifflett.

Their keen insight and enthusiasm for the subject matter made this a very worthwhile and

enjoyable learning experience.

 xxvviiii

 xxvviiiiii

II.. IINNTTRROODDUUCCTTIIOONN

The primary objective of this thesis is to port two Trusted Services – The Trusted

Computing Base Extension (TCB) Server and the Secure Session Server, which are

currently implemented for the XTS-300 in NPS’s Multilevel Secure Local Area Network

(MLS LAN) Project, to the Linux Operating System (kernel version 2.2.16, build 22)

running on an Intel Pentium Processor.

AA.. BBAACCKKGGRROOUUNNDD

 11.. PPuurrppoossee

This thesis is a continuation of an ongoing Naval Postgraduate School effort to

develop a high assurance Multilevel Secure Local Area Network (MLS LAN) that

incorporates commercial-off-the-shelf client workstations to provide multiple users with

simultaneous access to stored data at different sensitivity levels. As an additional

requirement, it should be cost effective and easy to use in an office environment. This

thesis will build upon this project by including in the network environment a modern, open

source operating system, Linux.

 Currently, in the MLS LAN, the TCB and Secure Session Servers are part of a TCB

that includes the TCB of the previously evaluated Class B3 high assurance server, the Wang

Government Services Incorporated XTS-300TM Operating System.

Currently, the NPS research team has modified the XTS-300 to support many MLS

LAN TCB requirements, such as Secure Attention Key (SAK) recognition and processing,

user access identification and authentication (I&A), session control and TCP/IP

 11

configuration management. The port of these services, which are not all inclusive, to Linux

will permit further experimentation with MLS architectural issues in a more flexible and

more easily modifiable environment.

This thesis will not attempt to implement any Mandatory Access Control (MAC)

based policies used in the current MLS LAN. This will be left for future work.

After completion of this thesis, the Linux-incorporated TCB Extension Server and

Secure Session Server will show that the XTS-300 TCB services can be ported to Linux

system as a single level system, ultimately moving towards a more security enhanced

implementation.

 22.. PPrroojjeecctt OOvveerrvviieeww

One of the major components of the MLS LAN is the Trusted Computing Base

(TCB). However, in order to extend a “Trusted Path” between TCB services and remote

clients over the MLS LAN, a Trusted Computing Base Extension (TCBE), MLS LAN

Connection Protocols, TCB Extension Server, and Secure Session Server are also needed.

These components ensure that “communications via the trusted path shall be activated

exclusively by a user of the TCB and shall be logically isolated and unmistakably

distinguishable from other paths.”[Ref.1] This thesis will focus primarily on the TCB

Extension Server and the Secure Session Server. The TCB Extension Server’s function is

to extend the TCB perimeter securely over a LAN to the requesting TCBE-equipped

workstation, whereas the Secure Session Server is responsible for accepting connections

from TCBE-equipped client workstations and establishing the TCP/IP protocol service for

the user. In the target architecture, the TCB and Secure Session Servers will be imported

into the Linux interface. Figure 1 illustrates the target architecture.

 22

Unprivileged Applications
Support Services

TCB Extension Server

Secure Session Server
TCBE

wi

tec

tha

at

co

fea

Se

the

ne

to

tec

pro

2.2

MLS LAN
Workstation

LINUX Kernel 2.2.16
32 bit Processor

TCBE
Perimeter

MLS LAN
Connection
Protocols

 Figure 1-1: Proposed System Architecture

 33.. MMLLSS LLAANN PPrroojjeecctt GGooaallss

The MLS LAN is an effort to provide governmental and commercial organizations

th a cost effective, multilevel networking solution by leveraging existing high assurance

hnology. The ultimate goal of the project is to demonstrate a prototype network design

t offers the ability to provide concurrent high assurance access for network users to data

multiple sensitivity levels through the incorporation of inexpensive commercial personal

mputers and software. The intended design of the network is to integrate the security

tures of a previously evaluated Class B3 high assurance server, the Wang Government

rvices Incorporated XTS-300, with the conveniences of up-to-date operating systems and

 latest commercial office automation software. The current plan for the MLS LAN

twork is to provide this functionality using the universally accepted TCP/IP protocol suite

allow our multilevel networking functionality to be layered on top of any chosen

hnology used in the lower layers of the OSI model. When completed, the MLS LAN will

vide a cost effective multilevel solution within an easy-to-use office environment.

 44.. TThheessiiss GGooaallss

This thesis is focused on researching the Linux Operating System, (Kernel version

.16 build 22), modifying Application Program Interfaces (APIs) and relevant functions

33

with the purpose of incorporating the MLS TCB Extension Server and Secure Session

Server into the Linux Operating environment. It is not the intent of this thesis to overhaul

the Linux operating system, nor will the solution be designed to satisfy any of the

International Standards Organization’s (ISO) Common Criteria ratings relating to Multilevel

Secure Systems.

A major benefit of porting the Trusted Computing Base Extension Server and Secure

Session Server, used in the MLS LAN architecture, to a Linux Kernel is to take advantage

of the functionalities incorporated in a more modern operating system, including shared

libraries, shared copy-on-write executables, demand loading, TCP/IP networking, true

multitasking, and more advanced memory management.

 55.. AAddvvaannttaaggeess ooff LLiinnuuxx vvss.. tthhee XXTTSS--330000

There numerous UNIX versions, however Linux has been chosen for this port based

on capabilities, legal issues, useability, economical issues and ease of portability benefits.

aa.. CCaappaabbiilliitteess

 The STOP 4.4.2 operating system could possibly be termed a “traditional”

UNIX system, since it is based upon the UNIX System V.3 implemetaion and lack many of

the System V.4 features. Generally, “traditional” UNIX systems are designed to run on a

single processor and lack the ability to protect their data structures from concurrent access

by multiple processors. Moreover, the “traditional” UNIX kernel is not very versatile,

supporting only a single type of file system, process scheduling policy, and executable

format. The “tradtional” UNIX kernel is not designed to be extensible and has few facilities

for code reuse. The result is that, as new features have been added to the various

 44

“traditional” UNIX versions, a lot of new code had to be added, yeilding a bloated and

unmodular kernel [Ref 3].

Another disadvantage is that the XTS-300 is a hardware dependent platform. It’s

source code is written to run on an i386 based processor.

 Linux tries to maintain a distinction between hardware-dependent and hardware

independent source code. Both the /arch and /include directories include nine subdirectories

corresponding to the nine hardware platforms supported. The standard platforms are

outlined in table 1-2.

Chip Architecture Platform
arm Acorn personal computers (Now part of

Broadcom Inc.)
alpha Compaq Alpha Workstations
i386 IBM compatible PC’s based upon Intel

80x86 or Intel 80x86 compatible
processors

m68k PC’s based upon Motorola MC680x0
microprocessors

mips Workstations based on Silicon Graphics
MIPS processors

ppc Workstations based on Motorola-IBM
PowerPC microprocessors

sparc Workstations based on Sun
Microsystems SPARC microprocessors

sparc64 Workstations based on Sun
Microsystems 64-bit Ultra SPARC
microprocessors

s390 IBM System /390 mainframes
 Table 1-1: Hardware Architectures supported by Linux

bb.. LLiinnuuxx iiss RReeaaddiillyy AAvvaaiillaabbllee

Linux has been copyrighted under the terms of the GNU General Public

 55

License (GPL)1. This is a license written by the Free Software Foundation (FSF) that is

designed to prevent people from restricting the distribution of software. In summary, a user

can charge as much as he or she likes for some particular software, but can't prevent the

person it was sold to from giving it away for free. It also means that the source code is

open source and must also be available. This is useful for programmers and developers. The

license also says that anyone who modifies the program must also make his or her version

freely redistributable.

cc.. UUssaabbiilliittyy

Another adavantage Linux has is its wide support for graphical user

interfaces, including The X Window System. This program, from MIT, allows computers

to create graphical windows, and is used on many different UNIX platforms. Although the

XTS-300 does provide support for X Windows, it does not readily support many of the

freely available desktops such as GNOME and KDE.

dd.. PPoorrttaabbiilliittyy

Linux is highly compatible with many common operating systems. For

example, you can mount file systems from many other operating systems such as MS-DOS

MS Windows, SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP, and many BSD variants,

and so on. You can operate with many network architectures like ethernet, Fiber Distributed

Data Interface (FDDI), etc., and by using suitable libraries, Linux is able to run programs

written for other operating systems. [Ref. 8]

1 The GNU Project is coordinated by the Free Software Foundation, Inc (http://www.gnu.org); its aim is to
implement a whole operating system freely useable by everyone. The availability of the GNU C compiler has
been essential for the success of the Linux project [Ref. 8].

 66

http://www.gnu.org/

Linux has been ported to a number of platforms. It runs on Compaq

Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM,

Hitachi SuperH, IBM S/390, MIPS, HP PA-RISC, Intel IA-64 and DEC VAX. Ports are

currently in progress to the AMD x86-64 architecture.

ee.. EEccoonnoommiicc BBeenneeffiittss

 Linux is free. You can install a complete UNIX system at no expense other

than that for hardware. Therefore, porting to the Linux operating system allows us to go

from a more limited environment to a more flexible one, with little or no cost.

 6. Disadvantages of Linux vs. XTS-300

The only true disadvantage relevant to this thesis is that Linux only incorporates

Discretionary Access Controls (DAC) and does not provide Mandatory Access Controls

(MAC). MAC and DAC will be explained in Chapter II.

 7. Methodology

• Linux Red Hat 7.0 (Kernel version 2.2.16 Build 22) and Wang XTS-300

interfaces will be analyzed to identify the existing design, primary data

structures, libraries, Application Program Interfaces, functional dependencies

(internal and external), etc.

• Use a UNIX based development environment to develop and/or modify code for

porting to the Linux environment.

• Use a run/test environment to debug and test new code.

 77

Interact with the designers and users of the MLS LAN project in order to keep the

implementation within the scope of the system’s original design while enhancing its appeal

and potential use in a more modern, less expensive environment.

BB.. CCHHAAPPTTEERR OOVVEERRVVIIEEWW

 11.. IInnttrroodduuccttiioonn

This thesis is composed of six chapters. This chapter provides the motivation,

objectives, research questions, scope and methodology employed to conduct the research.

Chapter II provides descriptions and comparisons of the XTS-300 and Linux security and

software architectures. Chapter III discusses XTS-300 and Red Hat Linux porting

environments. Chapter IV describes the ported modules and databases. Chapter V

describes the major source code changes in the port. Chapter VI presents Conclusions and

Recommendations. Appendix A provides a glossary of terms. Each of these Chapters is

outlined below.

22.. TThhee XXTTSS--330000 aanndd LLiinnuuxx SSyysstteemm AArrcchhiitteeccttuurreess

aa.. XXTTSS--330000

The XTS-300 product is a combination of STOP 4.4.2, a multilevel secure

operating system, and a Wang-supplied x86 hardware base. Its system architecture is

designed to implement the concept of a Trusted Computing Base. The primary software

components are the Security Kernel, TCB System Services (TSS), Trusted Software, and the

Commodity Application System Software (CASS). The Security Kernel provides basic

 88

system operating services and enforces system security. The TSS software provides general

trusted services to the XTS-300 application and system software. Trusted Software provides

additional security services outside the Security Kernel. Finally, CASS provides an

execution environment on the XTS-300 for UNIX-based applications. The TCB Extension

Server and Secure Session Server run as trusted software.

bb.. LLiinnuuxx

The Linux operating system was initially developed in 1991 by Linus

Torvalds for IBM-compatible 32-bit x86-based PCs (386 or higher). It is a clone of the

UNIX operating system and was written entirely from scratch,. It has all the features of a

modern (System V Release 4 and 4.4BSD) fully-fledged UNIX, including true multitasking,

virtual memory, shared libraries, demand loading, shared copy-on-write executables, better

memory management, and TCP/IP networking.

Unlike the XTS-300, where the CPU runs in the four execution state

(Rings), the Linux kernel only makes uses of Kernel mode (Ring 0) and User Mode (Ring

3). The TCB Extension Server and Secure Session Server will be ported to run in the User

Mode environment.

 33.. XXTTSS--330000 aanndd LLiinnuuxx PPoorrttiinngg EEnnvviirroonnmmeennttss

The XTS-300’s STOP, version 4.4.2, operating system is designed to support much

of the UNIX System V.3 interface for applications software. Linux implements many

features found in the System V.4 and 4.4BSD strains of UNIX, but does not necessarily

adhere to them in all cases. It is mostly POSIX.1 compliant (IEEE Std 1003.1-1988).

 99

There a many specific API services, library and system calls, used in XTS-300’s

System V.3 interface that may be incorporated differently or in some cases more effectively

in a POSIX.1 interface. This chapter will delineate portability issues between System V.3

interface and the POSIX.1 interface, specific to an XTS-300-to-Linux port.

 44.. PPoorrtteedd MMeecchhaanniissmmss

This chapter describes the TCB Extension and SSS servers and how their execution

domains compare between the XTS-300 and Linux environments.

 55.. SSoouurrccee CCooddee TTrraannssffoorrmmss ttoo tthhee LLiinnuuxx EEnnvviirroonnmmeenntt

This chapter details the changes to source code, and the significant compile and link

errors that occurred during the XTS-300 to Linux port.

 66.. RReessuullttss aanndd RReeccoommmmeennddaattiioonnss

This chapter outlines results such as performance, dependency issues, security and

future recommendations.

CC.. AAPPPPEENNDDIIXX OOVVEERRVVIIEEWW

 11.. AAppppeennddiixx AA:: GGlloossssaarryy ooff TTeerrmmss

Appendix A provides a glossary of common terms.

 1100

IIII.. TTHHEE XXTTSS--330000 AANNDD LLIINNUUXX SSEECCUURRIITTYY AANNDD MMAAJJOORR CCOOMMPPNNEENNTTSS

AA.. BBAACCKKGGRROOUUNNDD

Developed by Bell Laboratories in 1969, UNIX has evolved from a single operating

system to a family of operating systems, examples of which include AIX, BSDI, FreeBSD,

HP-UX, IRIX, Linux, NetBSD, OpenBSD, Pyramid, SCO (UnixWare and OpenServer),

Solaris, SunOS, and Tru64 UNIX. Other mainstream operating systems, such as Windows

NT, have UNIX roots. Additionally, the XTS-300 has a UNIX-like interface.

This chapter will briefly discuss the security policies enforced by the XTS-300 and

Linux. Additionally, the conceptual software and hardware components will also be

discussed.

BB.. DDIISSCCRREETTIIOONNAARRYY AACCCCEESSSS CCOONNTTRROOLL PPOOLLIICCYY

Discretionary Access Control (DAC) is a means of restricting access to objects based

on the identity of subjects and/or groups to which they belong [Ref. 15]. Typical UNIX

file system objects are discretionary, because the user can change access modes of the object

at his or her discretion. In UNIX and many other systems, DAC is always tied directly to

User Identification Numbers (UID's). The simplest implementation of this is that of

permission bits which support owner/group/world permission bits or read/write/execute.

The most common object that a typical user deals with is a file. File permissions are

defined by the file mode. The file mode contains nine bits that determine access

permissions to the file, plus three special bits. Access permissions are defined for three

classes of users: the owner, the group, and the rest of the world.

 1111

In Linux, a concept that is typically applied is that of a root (UID 0) or super-user

account. This account is trusted and can bypass system security mechanisms. It has all

DAC permissions, thus overriding access controls on all Linux objects, and often, other

implemented security settings.

The POSIX.1 DAC standard specifies the use of a permission bit to signify a

particular mode of access. This standard allows the defined permissions of read, write and

execute to be specified for:

1. the file owner,

2. the group of users specified as the ``owning group,'' and

3. all other users (named ``other'').

This mechanism can be cumbersome to use if permissions need to be specified for a

named user who is not the owner (and it is nearly impossible to specify separate permissions

for two users, neither of whom is the owner). It is also not possible to provide specific

permissions for different named groups of users.

Another concern is that DAC does not provide any way of restricting information

flow once a valid subject has “legally” accessed an object. This weakness makes DAC

policies vulnerable to Trojan Horses maliciously leaking information. Therefore the need

arises for providing additional controls -- such as Mandatory Access Controls, that limit the

indiscriminate flow of information in the system.

CC.. MMAANNDDAATTOORRYY AACCCCEESSSS CCOONNTTRROOLL PPOOLLIICCYY

Systems enforce Mandatory Access Control (MAC) by restricting access to objects

based on the sensitivity (as represented by a label) of the information contained in the

 1122

objects and the formal authorization (i.e. clearance) of subjects to access information of such

sensitivity. [Ref. 15]. In mandatory access control schemes, the system protects the files

and resources. This type of access can be implemented to handle a number of different

security levels, such as Top Secret, Secret, Confidential, and Unclassified, Official Use

Only, etc.

The system applies an access control sensitivity label to every user, file, and resource

in the system. By comparing the labels the system (not the system manager or user)

determines which user can access what information in the system.

A label consists of two parts:

• A classification — a single hierarchical level to permit access, for example, Top

Secret, Secret, Confidential, Unclassified, etc.

• A set of categories — a nonhierarchical set representing distinct areas of

information, such as Combat Systems, Supply, Engineering, Operations, or Squadron, etc.

DD.. TTRRUUSSTTEEDD PPAATTHH

A trusted path is a mechanism by which a user may directly interact with trusted

software, which can only be activated by either the user or the trusted software and may not

be imitated by other software. In the absence of a trusted path mechanism, malicious

software may impersonate trusted software to the user or may impersonate the user to

trusted software. Such malicious software could potentially obtain sensitive information,

perform functions on behalf of the user in violation of the user’s intent, or trick the user into

believing that a function has been invoked without actually invoking it. In addition to

supporting trusted software in the base system, the trusted path mechanism should be

 1133

extensible to support the subsequent addition of trusted applications by a system security

policy administrator.

The concept of a trusted path can be generalized to include interactions beyond just

those between trusted software and users. The MLS LAN uses the concept of a trusted

channel for communication between trusted software on different network components such

as a TCBE client and the TCB Extension Server. More generally, its mechanism guarantees

a mutually authenticated channel, or protected path, to ensure that critical system functions

are not being spoofed.

EE.. XXTTSS--330000 CCOOMMPPOONNEENNTTSS

 11.. IInnttrroodduuccttiioonn

The major components of the XTS-300 are the STOP 4.4.2 multilevel secure

operating system, and a Wang-supplied x86 hardware base. Its system architecture is

designed to support both a reference validation mechanism, or security kernel, and a

Trusted Computing Base.

This section will provide a brief description of the software and hardware

components of the XTS-300. If the reader wishes to obtain a detailed description of the

software architecture and security model, refer to [Ref. 1]. Additionally, the security

policies implemented in the XTS-300 will also be discussed.

 1144

 22.. PPrriimmaarryy SSooffttwwaarree CCoommppoonneennttss

The primary software components are the Security Kernel, TCB System Services

(TSS), Trusted Software, and the Commodity Application System Software (CASS).

Figure 2-1 shows the XTS-300 System Design [Ref. 11].

Ring3 Applic

Ring2 Commod
Syst

Ring1

Ring0

r

Figure 2-1: XT

33.. HHaarrdd

An Intel x86

that are used to con

instructions (such a

one of these privileg

As shown in

(Ring 0). It prov

Discretionary Acce

resource manageme

Use
ation Software

ity Application
em Services

Trusted Software

TCB System Services

Security Kernel

XTS-300 Hardware

S-300 Hardware Abstraction

wwaarree AAbbssttrraaccttiioonn

 microprocessor has four hardware privilege levels, also known as rings,

trol such things as memory access and access to certain sensitive CPU

s those related to security). At any given moment, a process executes at

e levels.

 Figure 2-1, the Security Kernel operates in the most privileged ring

ides all Mandatory Access Control, subtype, and a portion of the

ss Control (DAC) policy enforcement for process and device objects,

nt, process handling, and interrupt handling.

1155

The TSS software, which operates in the next-most-privileged ring (Ring 1) is

controlled by the security kernel. It implements a hierarchical file system, supports user I/O,

and implements the remaining discretionary access control for both trusted and untrusted

processes. Throughout this thesis, the TSS software will also be referred to as Operating

System Services (OSS) domain.

Trusted Software and Commodity Application System Services (CASS), executing

in Ring 2, provides additional security services and user functions outside the Security

Kernel. The ring is shared by the trusted software such as the STOP operating system or

user developed trusted code and the untrusted CASS. CASS provides an execution

environment for UNIX-based applications on the XTS-300. The CASS is not considered a

part of the TCB. While executing in the CASS domain, a process may access information

residing in a ring of the same or lesser privilege, but not in a ring of greater privilege [Ref.

11]. Trusted Software functions allow system operators and administrators to perform

security-related housekeeping and other privileged tasks not supported by the STOP

components [Ref. 1].

Ring 3, Application Domain, is reserved for user processes and is the least

privileged.

 44.. SSeeccuurriittyy PPoolliiccyy

aa.. XXTTSS--330000 MMAACC

The XTS-300 enforces the DOD policy for multilevel secure computing as

 1166

formalized in the obsolete Trusted Computer Security and Evaluation Criteria (TCSEC)2

and provides MAC that supports both mandatory security and integrity policies. The multi-

level features of the XTS-300 allow separation of users who are at different clearance levels,

and prevents a lower level user from reading a higher level user’s files or data. The use of

categories allows separation of the data between users at the same level, giving access to

certain users on a mandatory need-to-know basis [Ref. 12]. The TCB provides sixteen (16)

hierarchical security classifications and sixty-four (64) mutually independent security

compartments or categories. Eight (8) hierarchical integrity classifications and sixteen (16)

mutually independent integrity compartments or categories are also provided by the TCB.

The mandatory security policy enforced by the XTS-300 is based on the Bell

and LaPadula security model [Ref. 9]; the mandatory integrity policy is based on the Biba

integrity model [Ref. 10].

bb.. XXTTSS--330000 DDAACC

The XTS-300 also implements discretionary access control (DAC), where

access to an object is determined by the identity of the user and/or groups to which a user

belongs.

Specifically, the TCB enforces the following discretionary access rule:

• Access modes – a user is only allowed to access a data object in the

mode(s) granted by the owner of the object. Each object has allowed

permissions (read, write, execute) for the owner of the object, for the

2 ISO/IEC 15408, the Common Criteria (CC) for Information Technology (IT) Security Evaluation is the new
standard for specifying and evaluating the security features of computer products and systems. It has replaced
the TCSEC [Ref. 19].

 1177

members of the owner’s group, for other specifically identified users and

groups, and for all others.

The XTS-300 also enforces a general configurable policy that strengthens the

traditional mandatory and discretionary access rules called Subtype policy [Ref 12].

 Finally, the system provides for user identification and authentication needed

for user ID-based policy enforcement.

FF.. LLIINNUUXX CCOOMMPPOONNEENNTTSS

 11.. IInnttrroodduuccttiioonn

The major components of the Linux port are comprised of Linux Red Hat 7.0 –

kernel 2.2-16 build 22 and an Intel Pentium III hardware base. Unlike the XTS-300, the

Linux system architecture is not designed to support any reference validation mechanism

such as a security kernel, or a Trusted Computing Base. The Linux kernel mainly

implements a DAC security policy.

This section will provide a brief description of the software and hardware

components of the Linux port, and its implemented security policies.

 22.. PPrriimmaarryy SSooffttwwaarree CCoommppoonneennttss

The Linux system architecture is designed to support a single monolithic kernel that

runs in kernel mode, while all user programs run in user mode. The kernel contains code

for the file system, device drivers as well as code for process management. In contrast,

 1188

UNIX has always managed large parts of many system functions, such as networking etc,

outside the kernel, in user mode processes.

Linux is a true UNIX kernel, although it is not a full UNIX operating system. This is

because does not include all the applications such as file system utilities, windowing

systems and GUI desktops, system administrator commands, text editors, compilers, etc.

However, since many of these programs are freely available under the GNU General Public

License, they can be installed into one of the file systems supported by Linux [Ref. 8].

 33.. HHaarrddwwaarree AAbbssttrraaccttiioonn

As stated earlier, an Intel x86 microprocessor has four hardware privilege levels.

However, Unlike the XTS-300, which uses all four hardware privilege levels, Linux systems

support a Process/Kernel Model that only uses two levels of privilege-- Ring 0 (kernel) is

the most privileged level, with complete access to all memory and CPU instructions, and

Ring 3 (user programs) is the least privileged level. Figure 2-2 provides a general hardware

abstraction model of the Linux operating system.

When a process is running in Ring 3, it is said to be in User Mode and cannot

directly access the kernel data structures or kernel programs. Therefore the process should

only be able to make well-defined kernel calls through kernel system interface. However,

when a process is running in Ring 0, it is said to be in kernel mode, and the aforementioned

restrictions no longer apply. A process will switch from user mode (Ring 3) to kernel mode

(Ring 0) when making certain API function calls that require a higher privilege level, such

as those that involve accessing files or performing graphics-related functions. In fact, many

user-level threads can spend more time in kernel mode than in user mode.

 1199

A system (kernel) call is implemented by a trap, which is a "software exception"

that transfers control to the kernel (Ring 0); in Linux, for the x86, this is a software interrupt

(also called a "gate") [Ref. 16]. When the Kernel Mode functions are completed, the kernel

transfers control back to user mode. Transferring modes between the kernel and user space

prevents a programmer from being able to write user mode instructions that can run

privileged instructions in kernel mode, thus not providing any security or fault tolerance

mechanisms. In order to implement these mechanisms, the hardware must permit the kernel

to verify the input parameters e.g. valid buffer addresses, restore the saved states during the

mode switches, return to user mode (Ring 3), and resume execution.

Shell Edit

C Library Functions

r

Figure 2-2: Linux

 44.. SSeeccuurriittyy

In the Linux ke

significant is DAC. In

permissions known as A

Use
ors, User Programs

 System Calls

Kernel

Hardware

Hardware Design

 PPoolliiccyy

rnel only a few mechanisms are

 its Linux implementation, DAC

ccess Control lists (ACL). ACL

2200

Ring 3

API

Ring 0
 provided for security. The most

 is implemented in the form of file

s allow a list of user-specific rights

to be placed on objects, thus allowing users to make a determination as to the security that

should be applied to their data. Typically DAC controls are placed on all Linux file system

objects such as semaphores, shared memory, files, devices, etc.

Linux developers have slowly been implementing extra security features, called

capabilities, which have been added to the 2.1.x and 2.2.x kernels. Still, not a lot of

software takes advantage of these new features [Ref. 13]. The premise is to strip out the

root, or super-user account (almost every attack revolves around obtaining "root") and

replace it with a concept of Least Privilege. The idea behind Least Privilege is to create a

system where processes are given specific abilities that are limited solely to the tasks that

they are performing.

The main advantage of using capabilities is its simplicity. With just a couple of bits,

many permission scenarios can be modeled. Also, without the existence of root, many of

today’s Linux security vulnerabilities can be eliminated since there would be no root

account to access. As stated earlier, the root account is trusted and can bypass system

security mechanisms. It has all DAC permissions, thus overriding access controls on all

Linux objects, and often, other implemented security settings.

GG.. SSUUMMMMAARRYY

Although Linux and XTS-300 are both UNIX-like Architectures, Linux is not

designed as a trusted computing system. The XTS-300 implements Mandatory and

Discretionary security policies whereas Linux only implements minimal DAC. Linux has

no concept of a TCB or trusted and untrusted code, therefore the system administrator can

not implement security policies and procedures related to a trusted computing system.

 2211

Consequently, when porting from the XTS-300 to Linux, all of the MAC security polices

that the XTS-300 offer are lost. Linux will only execute the TCB Extension and SSS

Servers in the user domain (Ring 3). Table 2-1 summarizes the architectural abstractions

and Security Models implemented in the XTS-300 and Linux.

Security Models Environment Arch.

Abstraction
(Rings) DAC MAC

Kernel

Linux 0,3 X None Linux 2.2.16-22
XTS-300 0,1,2,3 X Bell-

LePadula
Biba STOP 4.4.2

Table 2-1: XTS-300 and Linux Architectures

Chapter III will outline the how the XTS-300 to Linux port was accomplished.

 2222

IIIIII.. XXTTSS--330000 aanndd LLIINNUUXX PPOORRTTIINNGG EENNVVIIRROONNMMEENNTTSS

AA.. BBAACCKKGGRROOUUNNDD

The latest commercial variants of UNIX, such as Linux, are derived from either

System V Release 4 (SVR4)3 or 4.4 Berkley Software Distribution (BSD) release from the

University of California at Berkley (4.4 BSD).

SVR4 is a product of AT&T’s UNIX System Laboratories. It is a merging of AT&T

UNIX System Release 3.2, Sun Microsystems SunOS system, the 4.3BSD release from the

University of California, and the Xenix system from Microsoft. The source code was

released in late 1989 with the first end-user copies being available during 1990 [Ref. 18]. It

is almost a total rewrite of the System V kernel and produced a clean, if complex

implementation [Ref. 3].

4.4 BSD is widely used in academic installations and has served as the basis for a

number of commercial UNIX products. Released in 1992, 4.4BSD is the final version of

BSD to be released, with the design and implementation organization subsequently

dissolved [Ref. 3].

 The SVR4 and 4.4 BSD implementations tend to agree on some common standards

like IEEE’s Portable Operating Systems based on UNIX (POSIX); the existing IEEE Std

1003.1, 1996 version, IEEE Standard for POSIX--Part 1.

Theoretically, UNIX applications ported to the Linux operating system can be

completed with very little effort. Linux, and the GNU C library used by it, have been

 2233

designed with application portability in mind, meaning that many applications will compile

simply through the use of the make4 utility. Even so, it may not be trivial to port from the

XTS-300 to Linux since the SVR4 UNIX interface was a major upgrade from SVR3’s.

Linux derives much of its functionality from SVR4.

This chapter provides an analysis of the major issues associated with porting from

the XTS-300 to Linux, highlighting the differences between the Linux interfaces, which

attempt to be POSIX.1 compliant and the XTS-300 interfaces which are based on the

System V Release 3.

 11.. LLiinnuuxx

Linux is combination of the System V Release 4 and 4.4BSD interfaces. Linux

Kernel Version 2.2, and beyond, aims to be compliant with the IEEE Std 1003.1-1988

(POSIX.1) standard. [Ref. 8]. By itself, the Linux kernel is not very innovative. When

Linus Torvalds wrote the first Linux kernel, he referenced some classical books on UNIX

internals, like Maurice Bach’s The Design of the UNIX Operating System (Prentice Hall,

1986). Therefore, Linux has some bias towards the UNIX baseline described in Bach’s

book (i.e. SVR4). However Linux does not stick to any particular variant of UNIX.

Instead, it tries to adopt good features and design choices of several different UNIX kernels

[Ref. 8].

In general, Linux has been designed to be compatible with older UNIX

implementations. This compatibility is intended to make application porting easier; and, in

3 SVR4 draws on the efforts of both commercial and academic designers and was developed to provide a
uniform platform for commercial UNIX deployment.[Ref 3]
4 The make utility is a tool for organizing and facilitating the update of executables or other files which are
built from one or more constituent files.

 2244

a number of instances, has improved upon or corrected behavior found in those

implementations.

Moreover, Linux includes all of the features of a modern operating system, like

virtual memory, a virtual file system, lightweight processes, reliable signals, SVR4

interprocess communications, support for Symmetric Multiprocessor (SMP) systems, etc.

 22.. XXTTSS--330000

The XTS-300’s STOP operating system is designed not only to support much of the

UNIX System V.3 interface for applications software, but to produce and run object

programs that adhere to a subset of the "Intel386 Family Binary Compatibility Specification

2" as well [Ref. 17]. The XTS-300 includes many of the Linux features mentioned above,

but many of them are provided in different ways. For example, SVR3 provides reliable

signals in a way that differs from POSIX.1 [Ref. 18].

BB.. PPOORRTTIINNGG MMOODDEELL

The porting model used in this thesis represents a simple example of source-level

porting. The XTS-300 source code is transported from its environment to Linux’s, and

adaptation occurs primarily in the Linux target environment. The TCB Extension Server,

Secure Session Server and related source code are transported to the Linux environment,

while adapting the configuration file flags, options and Macros. After various modifications

to the source code in the Linux environment, the code will be compiled and linked (using

gcc) in order to create useable executable files. Figure 3-1 shows the model abstraction.

 2255

Transport

Adapt

Lin ent

XTS-300 Environment

Executable

Compile/Link

Source Code

 Figure 3-1: Porting Mo

CC.. CCOOMMPPAARRIISSOONNSS

 The following is a list of items in the X

without change in the target (Linux). These items h

small number of modules.

When isolation is not feasible -- for examp

been encapsulated by defining intermediate module

new macros, or modifying compiler or linker flags.

11.. LLiibbrraarriieess aanndd SSyysstteemm IInntteerrffaacceess

The XTS-300 and Linux source code are li

initialization routines and libraries that contain th

routines.

 2266
ux Environm
Ported
Source Code
Compile/Link

Executable

del

TS-300, which cannot be implemented

ave been isolated as far as possible to a

le, I/O statements, the functionality has

s, making changes to libraries, defining

nked to specify the appropriate process

e proper system interfaces and library

The XTS-300 uses TCB gate interfaces and OSS domain library routines defined in

Ref. 12. On the XTS-300, most of the include files required for invoking the TCB gates

and OSS domain library routines are located in /usr/include/stop directory. The library

contents include the OSS domain library routines, TCB gate interfaces and some standard C

library routines. The OSS domain library is contained in the file /lib/liboss.a.

The OSS domain library, liboss.a, cannot be used in the Linux environment because

the source code is not available for compilation in the Linux environment. Therefore many

of the OSS function calls will be replaced with function calls in Linux’s libc.a library,

located in /usr/lib/libc.a. Additionally, the TCB gate calls used in the XTS-300 are replaced

by Linux system interface calls.

22.. SSiiggnnaallss

The basic signal() function is a feature of ISO C, while sigaction() is a function

defined as part of the POSIX.1 standard. Although sigaction() would be the preferred

function, signal() is used in some instances to support cleaner portability.

It is possible to use both the signal() and sigaction() functions within a single program, but

caution must be observed because they can interact in slightly strange ways. The sigaction()

function, through its arguments, specifies more information than the signal() function, so the

return value from signal() cannot express the full range of sigaction() possibilities.

Therefore, if signal() is used to save and later reestablish an action, it may not be able to

properly reestablish the handler that was initially created with sigaction(). If both

sigaction() and signal() must be used together, the problem can be avoided by always using

sigaction() to save and restore a handler if a program uses sigaction() at all. Since

 2277

sigaction() is more general, it can properly save and reestablish any action, regardless of

whether it was established originally with signal() or sigaction().

On some systems, if an action is established with signal() and then examined with

sigaction(), the handler address that was specified by signal() may not be the one provided

to sigaction(). It may not even be suitable for use as an action argument with signal(). But

it can be relied upon if it is used as an argument to sigaction(). This problem is not an issue

in the targeted Linux environment.

Many of the OSS domain signal-like functions were replaced with SV4 signal function calls

where practical. Since signals on SV4 platforms have some backwards compatibility with

SV3 signals, in some instances SV3 signals were used in order to make the change cleaner.

Table 3-1 lists the XTS-300 signal calls that were transformed to work in the Linux

environment.

XTS-300 Linux Translation
set_ipc_event_handler
(ANY_EVENT, &(sig_event));

signal(ANY_EVENT, &(sig_event));

suspend_event
(ANY_EVENT,0,0,NULL,NULL,NULL);

wait(ANY_EVENT);

send_event(getppid(),
RAISE_SIGNAL_EVENT,NULL,0);

kill(getppid(),RAISE_SIGNAL_EVENT);

set_ipc_event_handler(RAISE_SIGNAL_EVENT, handler); sigaction((RAISE_SIGNAL_EVENT, ,
sigact.sa_handler ,NULL);

set_ipc_event_handler(TERMINATE_PROCESS_EVENT,
handler);

sigaction(TERMINATE_PROCESS
EVENT, sigact.sa_handler,NULL);

suspend_event(ANY_EVENT,
ONE_SECOND,0,NULL,NULL,NULL)

sleep(1);

Table 3-1: Linux and XTS-300 Signal Translations

33.. SSyysstteemm VV IIPPCC

In the XTS-300 environment, various Inter-Process Communication (IPC)

mechanisms exist for OSS domain programs and for Application domain programs (CASS

 2288

programs). Some of these mechanisms are only available for one type of program, and

therefore, cannot be used as an IPC mechanism between domains.

Linux does not have an OSS or CASS domain, however programs that run in the

CASS domain on the XTS-300 can run in the user domain (Ring 3) in Linux. OSS domain

functions ported to Linux are replaced with equivalent SV4 IPC functions for messages,

shared memory and semaphores.

aa.. SShhaarreedd MMeemmoorryy

When compiling, there is a conflict resolving the storage size of the structure

shmid_ds defined in /stop/sys/shm.h. It was not clear why this conflict exists, but the

solution was to prohibit use of the shm.h file used by the /include directory in the XTS-300

and instead use /usr/include/sys/shm.h in Linux.

bb.. MMeessssaaggeess

Table 3-2 shows the messaging IPC mechanisms. The XTS-300 mechanisms

can only run in the OSS domain (Ring 2). Therefore, they are translated to POSIX.1

compliant mechanisms capable of running in the Linux user (Ring 3) domain.

XTS-300 Linux Translation
send_ipc_message(procuid id,
ring target ring,
bool upgrade_allowed,
ipc_event_type message_type,
far const void *data, sizet data size);

msgsnd(int msgid,
const void *ptr,
size_t nbytes,
int flag;)

receive_ipc_message(_far ipc_event_type
*message_type, far procuid *sendingprocess,
far ring *sending_ring, far void *data, far size_t
*data_size);

msgrcv(int msgid,
void *ptr,
size_t nbytes,
long type,
int flag)

Table 3-2: XTS-300 and Linux Message Translations

 2299

cc.. SSeemmaapphhoorreess

The semget and semop IPC mechanisms are available for both OSS domains

and Application domain programs. The only major change with semaphores is that the

union variable

semun{int val; sem_ds *buf;unsigned short *array}sem_arg;

was added in /util/msem.c. Also external functions semget(ket_t, int,int) ,

semop(int,sem_operation, int), and semctl(int, int, int, union semun arg) are commented out

because there is no advantage declaring these as external functions when all references to

them can be made via declarations in the /include/msem.h header file.

44.. AAcccceessss CCoonnttrrooll

 SSS programs must take on the user/group access class of the user of the TCBE. In

order to accomplish this, the XTS-300 kernel call (TCB-Gate) set_user_group(ushort euid,

ushort egid,ushort ruid, ushort, rgid) is used. This function sets the real and effective

user/group identifiers for the current process. In the port to Linux, the function is replaced

with setuid(uid_t uid). If groups need to be addressed, the setgid(gid_t gid) may be used.

55.. VVaarriiaabblleess

The GNU C compiler (gcc) in Linux returned numerous errors during the porting

process because function-local variables were not declared at the beginning of the functions.

This problem was resolved by placing local variable declarations at the beginning of

functions.

There are many variable types declared in the XTS-300 STOP directory header files

that are also declared in Linux header files. When such conflicts developed, the XTS-300

 3300

declared variables were commented out in favor of Linux declarations, many of which are

declared in /usr/include/sys/types.h.

66.. PPrroocceesssseess

In Linux, the fork() function is used to create a child process. The XTS-300 uses

fork_process(). However, the exact semantics of how it works, how much of the parent's

environment, and how many of its facilities are inherited by the child process are the same

as those for the Linux mechanism.

 The XTS-300 load_process() TCB gate (system call) provides the mechanism for

starting a process with a new personality. Linux does not have a load_process() system

call, therefore a fork()/exec() sequence was used to obtain the equivalent results.

77.. NNeettwwoorrkkiinngg

The XTS-300’s OSS Domain uses the socket library (libsocket) for client/server

communications by specifying the –lsocket argument when compiling. However, when

ported to Linux, this library is not required and all of the socket functions are in Linux’s

libc.a library in directory /usr/lib/libc.a.

88.. RReeffeerreennccee aanndd DDeebbuugg FFiillee LLooccaattiioonnss

All references to logs and debug files were changed to directory

/home/mvglover/thesis/logs.

 3311

DD.. SSUUMMMMAARRYY

This chapter provided an analysis of the major issues associated with porting from

the XTS-300 to Linux, highlighting the differences between the interfaces of the two

systems.

In theory, UNIX applications ported to the Linux operating system can be completed

with very little effort. However, the XTS-300 implements various Signals and IPCs that are

specific to its TCB, thus not a found in POSIX implementations. These program

communication mechanisms elicit the majority of changes when porting from the XTS-300

to Linux.

The port environments are outlined in Table 3-3.

 Linux XTS-300

Kernel 2.2.16-22 STOP 4.4.2
C Library libc 2.192 Non-standard
Compiler gcc 2.96-54 (which gcc; rpm

–qf /usr/bin/gcc), based on
GNU CC 2.95.2

Non-standard

Editor GNU emacs 20.7.1 N/A
API Mostly Compliant with

POSIX.1
UNIX
System V version 3

C Standard ANSI C ANSI C
Operating System Red-Hat Linux 7.0 XTS-300
Java Runtime Environment J2sdk-1.4.0 (needed for

TCBE test client)
N/A

Processor Type Pentium III 700 (i686) Pentium 75Mhz
Table 3-3: Linux and XTS-300 Port Environments

 3322

IIVV.. PPOORRTTEEDD MMEECCHHAANNIISSMMSS

AA.. DDEESSCCRRIIPPTTIIOONN OOFF PPOORRTTEEDD SSEERRVVEERRSS

11.. TTCCBB EExxtteennssiioonn SSeerrvveerr

This section provides a synopsis of the TCB Extension Server description

provided by Wilson, [Ref. 1].

The Naval Postgraduate School previously developed the TCB Extension

Server process. As shown in Figure 1.1, its purpose is to extend the TCB perimeter

securely over the network to the requesting TCBE-equipped workstation. The TCB

Extension Server process is comprised of a single parent and multiple child processes that

are responsible for accepting connections from the TCBE-equipped client workstations.

The parent process will initially listen on an assigned port for incoming secure attention key

(SAK) requests initiated from the user at the remote TCBE-equipped client. Once a request

is received, the parent process will verify the identification and authorization of the

requesting TCBE. If the verification is successful, a child process is created and the parent

is able to relinquish control of the communications to the child. This frees the parent to

listen for new connection requests. If the Identification & Authorization is in error, the

connection is terminated and no child is created [Ref. 4].

Each TCBE connection to the MLS LAN is therefore assigned an individual

child TCB Extension Server process that will handle all of the security-related operations

necessary to establish and maintain a session on the MLS LAN. The current MLS LAN

 3333

design enables the child process to present the user with menus, with which he or she may

conduct all trusted path security related operations such as “login” and “session

negotiation”. This process also controls the actions of the connected TCBE through

specific TCBE state commands. At any time, the user make invoke the Secure Attention

Key (SAK) which will prompt the TCB Extension Server to interrupt the current running

process, verify the TCBE, and present an appropriate menu of trusted path operations.

aa.. TTCCBB EExxtteennssiioonn SSeerrvveerr oonn LLiinnuuxx

In the XTS-300, the TCB Extension Server executes in the OSS domain,

Ring 2 (where CASS and Trusted software execute), of the XTS-300. However, the port to

Linux requires execution of the TCB Extension Server is in the user domain, (Ring 3) using

ported CASS domain services. Yet, there are instances where OSS domain services will be

required. When OSS services are required, they need to be modified to run in the Linux

environment.

22.. SSeeccuurree SSeessssiioonn SSeerrvveerr ((SSSSSS))

 This section recaps the Secure Session Server description provided by Wilson

[Ref. 1].

Previously developed at The Naval Postgraduate School, the Secure Session Server

process is comprised of a single parent and multiple child processes for each platform on

which a given application protocol is hosted The Secure Session Server parent process is

responsible for accepting connections from TCBE-equipped client workstations and

establishing the TCP/IP protocol services for the user. Up to ten child processes can be used

per session to service a connection for a parent SSS. The parent process will initially listen

 3344

on an assigned port for incoming requests for protocol service. Once a request is received,

the parent processes will verify the user’s MLS LAN session with the User Database. Each

protocol service request is assigned an individual child Secure Session Server process that

will handle all of the protocol transmissions to and from the Application Protocol Server.

The child process is responsible for the creation of a unique Application Protocol Server

process tied directly to the user through a handle created from the session data received from

the Session Database Server (username, session level). The User Database5 is used to bind

communications from a particular TCBE to a specific user and session level [Ref. 4]. If the

verification is successful, a child process is created, with a valid session, to service the

connection. This frees the parent to listen for new connection requests. If the verification is

in error, the connection is terminated and no child process is created. [Ref. 4].

aa.. SSeeccuurree SSeessssiioonn SSeerrvveerr iinn LLiinnuuxx

In the XTS-300, the Secure Session Server executes in the OSS domain, Ring

2 (where CASS and Trusted software execute), of the XTS-300. However, the port to Linux

requires execution of the SSS executes in the user domain, (Ring 3) using ported CASS

domain services. Yet, there are instances where OSS domain services will be required.

When OSS services are required, they need to be modified to run in the Linux environment.

 Also, in the current Linux-based implementation, the Secure Session Server

observes the session level in the User database. In the current ported configuration, the

session level indicates a security level four and integrity level zero. However, the Linux

5 This database is initialized (a new record will be created) each time a user on a valid TCBE logs in and is
updated when the user changes session level, or initiates a session. The entry for a user is cleared when the user
logs out. It is maintained (readable/writable) by the TCB Extension Server and shared (readable) by the SSS.
The SSS reads this database to obtain the user name, session level, and session status, each time the SSS receives
a protocol session request from a client.

 3355

operating system does not support security and integrity levels. Therefore, in the current

port, the handle (descriptor) will be based only upon the socket creation between the remote

client and the Secure Session Server. The security and session levels may be re-

implemented if the SSS is ported to future Linux platform that supports those security

mechanisms.

BB.. DDEESSCCRRIIPPTTIIOONN OOFF PPOORRTTEEDD DDAATTAABBAASSEESS

The following lists of databases files are required for the port to the Linux

environment. They provide data necessary for the compilation and execution of the TCB

Extension and SSS Servers. The descriptions of the databases are from Shifflett [Ref. 4].

11.. pprroottoo__lliisstt

The ‘Protocol DB’ is used to list the application protocols that will be

provided by the MLS LAN. The ‘Protocol DB’ will contain the following fields:

• Protocol ID – a descriptive identifier of the protocol

• Port Num – the TCP port number to listen to for service requests

• Path – the path to the untrusted executable that encodes the protocol

service (e.g. IMAP, sendmail, etc.)

This database is:

• Administratively set.

• Used to start all necessary SSS processes

• Managed by the ‘Allowed Protocols’ module.

 3366

22.. ttccbbee__lliisstt

The ‘tcbe_list” file is a list of TCBEs that can be used to login to the MLS

LAN TCB. The ‘tcbe_list’ will contain the following fields:

• TCBE ID – this field will be a unique identifier of the TCBE instance

• A potential future enhancement would include session level minimum and

maximum for each TCBE, and/or a list of users allowed using each TCBE.

The TCB Extension Server will use this database to restrict login access (e.g. trusted

path access) to the MLS LAN TCB.

This database is administratively set and cannot be modified by the TCB Extension

Server, or the SSS.

This database will be read (cached) by the TCB Extension Server on startup.

 This database will be managed by the ‘Allowed TCBE’ module.

33.. ppmmaapp__ddbb..ttxxtt

The ‘Pseudo-Socket Map DB’ is used to map a particular user and session level to a

Pseudo-Socket (PSKT). This database will contain the following fields:

• User ID – the ID of a user

• Session level – the session level of the user

• Handle – a handle to a PSKT.

This database will be maintained by the SSS child processes. Since this database is

shared by multiple processes, a locking capability will be needed to prevent more than one

SSS child process from allocating the same PSKT handle.

 3377

This database will be read-only by the protocol server processes that use it to obtain

the PSKT handle.

This database will be managed by the ‘PSKT Map’ module.

CC.. SSUUMMMMAARRYY

The Naval Postgraduate School previously developed the TCB Extension and Secure

Session Servers for use on the XTS-300. The TCB Extension Server’s purpose is to extend

the TCB perimeter securely over the network to the requesting TCBE-equipped workstation.

The SSS parent process is responsible for accepting connections from TCBE-equipped

client workstations and establishing the TCP/IP protocol services for the user.

In the XTS-300, both servers execute in the OSS domain. In the Linux environment,

they execute in the user domain, (Ring 3).

There are also four database files that need to be copied to the Linux environment.

These databases provide services such as users databases, allowed clients, allowed protocols

and socket services.

 3388

VV.. SSOOUURRCCEE CCOODDEE TTRRAANNSSFFOORRMMSS TTOO LLIINNUUXX EENNVVIIRROONNMMEENNTT

AA.. IINNTTRROODDUUCCTTIIOONN

The ported software has the directory structure shown in Fig. 5-1. All preprocessor

directives and directory searches are made based upon this structure.

Big programs are made up of many modules [3]. These modules provide the user

with functions and data structures that are to be used in a program. The modules in the port

essentially come in two parts: the interface and implementation. The interfaces that

specifies what the TCB Extension and SSS modules do are located in the

/home/mvglover/thesis/include and /home/mvglover/thesis/stop directories, while the

implementations are specified in the /home/mvglover/thesis/tps, /home/mvglover/thesis/util

and /home/mvglover/thesis/sss directories. The interface declares all of the data types,

function prototypes, global information, macros, or whatever the module requires. The

implementation adheres to the specifications set forth by the interface. This is how the

XTS-300 port is designed.

The ~/logs directory contains the databases required for the TCB Extension and SSS

servers and it also contains the debugging logs used when the debugging flag option is set.

 3399

S

S

BB.. CCOOMMPP

The foll

the XTS-300 to

 11.. SS

This dir

Gates (STOP ke

aa

Compile/link/
structure access is
different kind of s
conflicts with a de
access in /usr/incl

bb

Compile/link/l
-DAEMON_NAM
here (not a functio

-size of array “dae
non integer type

SSS

IILLAATTIIOO

owing table

 Linux port

TTOOPP

ectory cont

rnel calls)

.. aaccccss

logical erro
 redeclared as
ymbol and
finition of
ude/unistd.h.

.. MMeess

ogical erro
E undeclared
n)

mon_name” h
/HOME/MVGLOVER/THESI

 Figure 5-1: P

NN AANNDD LLIINNKK RR

s list the significan

.

ains most of the inc

and OSS domain li

eessss..hh

r Location Re
 a Line 94 Re

ac

ssaaggee..hh

r Location Re

as

Line 94 In
“#i
(SU

44
INCLUDE
TCB
 UTIL

orted Directory Structure

EESSOOLLUUTTIIOONNSS

t compile and link errors that oc

lude files required for invoking T

brary routines.

solution Rem
named variable access to
cessinfo

All i
struc
acce
code

solution Rem
/stop/limits.h, commented out
f defined
BSYSTEM_DEF)” block

00
STOP
LOG

S
SY
curred during

CB-

arks
nstances of
ture variable
ss in source
 changed

arks

cc.. lliimmiittss..hh

Compile/link/logical error Location Resolution Remarks
 In /stop/message.h
DAEMON_NAME undeclared

 commented out “#if
defined(SUBSYSTEM_DEF)”
block

CLK_TCK already defined in
time.h.

64 Commented out #define
CLK_TCK

CLK_TICK in
limits.h is required
for a
SUBSYSTEM_DEF

dd.. ttccbb__ggaatteess..hh

Compile/link/logical error Location Resolution Remarks
sss.c, received parse error that
ulong not recognized

Line 65 added #include
</usr/include/sys/types.h>

Used Linux ulong
definition

Structure access in /stop/access.h
redeclared as a different
identifier

Lines
61,63,77,20
7,273,282

Changed instances of ‘access’ to
‘accessinfo’

ee.. SSttddttyypp..hh

Compile/link/logical error Location Resolution Remarks
FALSE redefined; already
defined in
/usr/include/sys/types.h

55 Commented out and added
#include
</usr/include/sys/types.h>

Warning, not error

TRUE redefined; already
defined in
/usr/include/sys/types.h

56 Commented out and added
#include
</usr/include/sys/types.h>

Warning, not error

ushort redefined; already
defined in
/usr/include/sys/types.h

39 Commented out and added
#include
</usr/include/sys/types.h>

Warning, not error

ulong redefined; already defined
in /usr/include/sys/types.h

40 Commented out and added
#include
</usr/include/sys/types.h>

Warning, not error

22.. TTCCBB EExxtteennssiioonn SSeerrvveerr MMoodduullee

aa.. MMaakkeeffiillee

The –I../stop option was added to the INC_OSS and INC_CASS flags.

The domain flags,

 4411

CFLAGS_OSS = -oss -DOSS_OPTION

CFLAGS_OSS_DAEMON = -oss -DOSS_OPTION –daemon -DIS_DAEMON

were commented out so that source code that executes in the OSS domain will only use

CASS domain services.

In the tps and tpsd compile commands the –lsocket option was removed

because this library is not required. All of the socket functions are in Linux’s libc.a library

in directory /usr/lib/libc.a.

bb.. ttppss..cc

In tps.c, there are various OSS Domain Library functions that need to be

changed to conform to Linux signals and messages.

Compile/link/logical error Location Resolution Remarks
 Added #include “..stop/message.h”
 <signal.h>

<sys.ipc.h>
<sys.msg.h>

needed for
sysV.4 IPC
calls

 Commented out;
#include <sys/byteorder.h>

Warning,
not error

 Changed the directory location for the log
files

send_event(child_pids[idx],TERMIN
ATE_PROCESS_EVENT, NULL, 0);

296 Replaced with
kill(child_pids[idx],SIGSTOP);

Needs
sysV.4
signal

receive_ipc_message((_far
ipc_event_type *)(&e_type),
(_far procuid *)(&pid),
(_far ring *)(&ring_num)
(_far char *)data,
(_far_size_t *)(&data_len));

265 msgrcv(((_far ipc_event_type
*)(&e_type),
(_far procuid *)(&pid),
(_far ring *)(&ring_num)
(_far char *)data,
(_far_size_t *)(&data_len));

set_ipc_event_handler
(ANY_EVENT, &(sig_event));

115 signal(ANY_EVENT, &(sig_event)); Needs
sysV.4
signal

suspend_event
(ANY_EVENT,0,0,NULL,NULL,NU
LL);

120 wait(ANY_EVENT); Needs
sysV.4
signal

 4422

cc.. ttppss__uuttiillcc..

Compile/link/logical error Location Resolution Remarks
 Added #include

“..stop/message.h”
needed message
declarations

 Added <time.h>
 Added <types.h> Needed Linux type

declarations
set_ipc_event_handler(ANY_EVENT,
&(sig_event));

1119 signal(ANY_EVENT,
&(sig_event));

set_ipc_event_handler(ANY_EVENT,
&(sig_event));

1120 signal(ANY_EVENT,
&(sig_event));

*get_trusted_info

 33.. IINNCCLLUUDDEE

aa.. lleevveell..hh

In the XTS-300, the level.h header file is not in /include directory. However,

for the Linux port it was added because many of the access.h is dependent on level.h for

many variable declarations.

bb.. uusseerrddbb..hh

Compile/link/logical error Location Resolution Remarks
parse errors in function prototype
int user_logged_in()

Line 118 Added <access.h> to else block of
macro at beginning of file.

parse errors in function prototype
int get_session_level()

140 Same as above

parse errors in function prototype
int set_session_level()

172 Same as above

cc.. uuttiill..hh

Compile/link/logical error Location Resolution Remarks
 parse errors in function
prototype char *disp_sess()

Line 96 Added <access.h> to else block of
macro at beginning of file
user_db.h

 4433

parse errors in function prototype
void get_network_level()

104 Same as above

parse errors in function prototype
void_get_current_level()

112 Same as above

parse errors in function prototype
int check_access()

122 Same as above

dd.. mmsseemm..hh

Compile/link/logical error Location Resolution Remarks
parse error before access_ma Lines 38,48 Added <access.h> to else block of

macro at beginning of file

ee.. ppmmaapp__ddbb..hh

Compile/link/logical error Location Resolution Remarks
parse error before access_ma Lines

66,79,101,1
23

Added <access.h> to else block
of macro at beginning of file

ff.. ppsskktt..hh

Compile/link/logical error Location Resolution Remarks
parse error before access_ma Line 62 Added <access.h> to else block of

macro at beginning of file

gg.. sshhmm..hh

Compile/link/logical error Location Resolution Remarks
Parse error before access_ma
when compiling user_ia.c

Line 40 Added <access.h> to else block of
macro at beginning of file

Parse error before access_ma
During compile of shm.c

Line 50,64 Added <access.h> to else block of
macro at beginning of file

hh.. aallww__ttccbbee..hh

Compile/link/logical error Location Resolution Remarks
 Changed default location of

TCBE_FILE to
/home/mvglover/thesis/logs/tcbe_
list

Old path defined for
XTS-300

ii.. hhrrll__ddbb..hh

Compile/link/logical error Location Resolution Remarks

 4444

parse error before access_ma Lines
79,148

Added <access.h> to else block of
macro at beginning of file

44.. UUTTIILL MMoodduullee

aa.. MMaakkeeffiillee

The domain flag,

CFLAGS_OSS = -DOSS_OPTION

was commented out so that source code that executes in the OSS domain only use CASS

domain services.

In order to build the lbutil_oss.a library, the –oss flag was removed. This

was done because of an error stating that too many –c –o or –S flags in multiple

compilations. It seems that this error occurred because the compiler did not recognize the –

oss flag and thought that that the user was using the –o flag twice.

The –oss flag is necessary so that the /stop directory and the liboss.a library

can be utilized. However, the Makefile was changed so that /stop directory is searched,

and the liboss.a library is not used in the Linux port. Therefore the –oss flag is not

necessary.

bb.. bbuuffff__iioo..cc

Compile/link/logical error Location Resolution Remarks
parse errors idx Lines

153,213,34
0

cc.. mmeennuu..cc

Compile/link/logical error Location Resolution Remarks
 parse errors idx Line 100

 4455

dd.. mmsseemm..cc

Compile/link/logical error Location Resolution Remarks
Conflicting types for semop()
and semctl(), function prototypes

75-77 Commented out semop(),
semctl(), and semge()t external
function declarations.

Commented out
external value semget()
so of SYS V
semaphore functions
are used consistently

Parse error before union,
sem_arg undeclared

178 Added union added semun{int
val; sem_ds *buf;unsigned short
*array}sem_arg;

ee.. ppmmaapp__ddbb..cc

No Change

ff.. ppsskktt..cc

Compile/link/logical error Location Resolution Remarks
Dereferencing pointer to
incomplete type

Line 1257 ccoommmmeenntteedd oouutt ccoouunnttddoowwnn ==
ttiimmeeoouutt-->>ttvv__sseecc

Dereferencing pointer to
incomplete type

Line 1336 commented out countdown =
timeout->tv_sec

gg.. sshhmm..cc

Compile/link/logical error Location Resolution Remarks
parse error for the shmid_ds
in header file shm.h

 Commented out <sys/shm.h> and
specifically added
</usr/include/sys/shm.h

This also got rid of an
error at lines
115,189,265, that
stated that ‘storage size
of shmid_ds isn’t
known.

hh.. aallwwee__ttccbbee..cc

No Change

ii.. pprriivv__uuttiill..cc

Compile/link/logical error Location Resolution Remarks
Parse error before access_ma Line 26 Added <access.h> to else block of

macro at beginning of file

 4466

jj.. uusseerr__ddbb..cc

No Change

kk.. uusseerr__iiaa..cc

Compile/link/logical error Location Resolution Remarks
‘uauth_entry’ undelcared 45 In the /stop/user_group.h file I

commented out the if
“SUBSYSTEM_DEF = =
SS_TRUSTED || defined
(NEED_AUTH)”

Link Error when compiling tps.c:
Undefined references to
Get_user_numbe()
Get_uauth_entry()
Level_valid_for_user()

 Commented out all code in body
of function

All source code that referred to privilege code was deleted since privileged

code would not be run in the Linux environment.

ll.. uuttiill..cc

Compile/link/logical error Location Resolution Remarks
Link Error when compiling tps.c:
Undefined references:
Get_current_leve()

 Commented out section that
addressed privilege code

Need to get source
code or library for
these function call.
Library is cass.a

The getlevel() function call was deleted and the include file

</stop/access.h> was added.

55.. SSSSSS MMoodduullee

aa.. MMaakkeeffiillee

 The XTS-300 environment, the compiler used options flag –I

/usr/include/sys, however this option is not required in the Linux environment because the

 4477

GNU gcc in Linux Redhat 7.0 by default searches for this directory path. Also, –I../stop was

added so that the /stop directory would be searched.

The domain flags,

CFLAGS_OSS = -DOSS_OPTION –daemon –DIS_DAEMON

were commented out so that source code that executes in the OSS domain will only use

CASS domain services.

In the Makefile configuration file, getpwnam and getpwent are commented

out, because the function calls are already defined in libc.a. Also usr/libc is changed to

conform to the Linux path /usr/include/libc.

bb.. ssssss..cc

Compile/link/logical error Location Resolution Remarks
 Commented out sys/byteorder.h
Undefined variable errors for
NO_GROUP_CHANGE and
NO_USER_CHANGE

Line 127 Replaced with setuid(pwent-
>pw_uid)

set_ipc_event_handler(RAISE_SI
GNAL_EVENT,
&(sss_sig_event)); undefined

 Replaced with
signal((RAISE_SIGNAL_EVENT,
&(sss_sig_event));

suspend_event(ANY_EVENT,
ONE_TENTH_SECOND,0,NUL
L,NULL,NULL) undefined

229 Replaced with sleep(.1); Link Error;
Also
ONE_SECOND
 is defined as
1000000/128L in
kernel.h

the_err =
send_event(sss_pids[idx],
TERMINATE_PROCESS_EVEN
T,NULL,0); undefined

253

Replaced with the_err =
kill(sss_pids[idx],
TERMINATE_PROCESS_EVENT);

Commented out the_err =
send_event(getppid(),
RAISE_SIGNAL_EVENT,NULL,
O); undefined

262 Replaced with the_err =
signal(getppid(),
RAISE_SIGNAL_EVENT);

Commented out
print_error(“send_event_error
:”,the_err); undefined

266 Replaced with
debugd(“send_event_error
:”,the_err);

 4488

Commented out: #define
sleep(a)
suspend_event(NO_EVENT,(a)*
ONE_SECOND,
0,NULL,NULL,NULL);

 Replaced with sleep(a)

cc.. ssssss__uuttiill..cc

Compile/link/logical error Location Resolution Remarks
 Commented out sys/byteorder.h
Error: variable-size type declared
outside of any function in
statement temp_buff[read_limit +
1];

 Changed ‘read limit +1’ to
‘4097’

Struct timeval was not defined Added #include <time.h>
 410 Changed directory of

ssschild_%d.tmp to
/home/mvglover/thesis/logs/

Undefined variable errors for
NO_GROUP_CHANGE and
NO_USER_CHANGE

Line 472 Replaced with setuid(pwent-
>pw_uid)

send_ipc_message(child_proc,2,T
RUE,DEVICE_AVAILABLE
EVENT,(_far const void *)
NULL,0)… undefined

521 msgsnd(child_proc,(_far const
void
*)NULL,0,DEVICE_AVAILAB
LE_EVENT);

Args 2 and three from
send_ipc_message are
not necessary in Linux
translation.

set_ipc_event_handler(ANY_EV
ENT),
&(ssd_sak_handler)); undefined

181 Replaced with
signal(ANY_EVENT,
&(ssd_sak_handler));

Link error

Commented out
suspend_event(ANY_EVENT,0,0
,NULL,NULL,NULL) undefined

185 Replaced with sleep(0); Link error

Commented out
suspend_event(ANY_EVENT,
ONE_SECOND,0,NULL,NULL,
NULL)

318 Replaced with sleep(1); Link Error
Also ONE_SECOND
 is defined as
1000000/128L in
kernel.h

Commented out the_err =
send_event(sss_pids[idx],
TERMINATE_PROCESS_EVEN
T,NULL,0);

352 Replaced with the_err =
kill(sss_pids[idx],
TERMINATE_PROCESS_EVE
NT);

Commented out
suspend_event(ANY_EVENT,
5*ONE_TENTH_SECOND,0,NU
LL,NULL,NULL)

189 Replaced with sleep(.5); Link Error
Also ONE_SECOND
 is defined as
1000000/128L in
kernel.h

Commented out
print_error(“send_event_error
:”,the_err);

409 Replaced with
debugd(“send_event_error
:”,the_err);

Commented out the_err =
send_event(getppid(),
RAISE_SIGNAL_EVENT,NULL
,0);

406 Replaced with
kill(getppid(),RAISE_SIGNAL_
EVENT);

 4499

Link_error: undefined reference to
load process(far const char
*)my_aps_path,my_user_sess,
FALSE, (_far short *)NULL,(_far
procuid *)(&child_proc));

509 Used fork()/exec() sequence:
if((child_proc = fork()) < 0){
 err_sys(“fork_error”);
 done=TRUE;
 }
else if (child_proc == 0){
 if (execle((_far const char
*)my_aps_path,NULL,NULL,N
ULL,NULL) < 0)
 err_sys(“execle error”);…….

load_process() is a
TCB gate system call
which requires the
oss.a library, which not
available in Linux
Environment

Commented out
set_ipc_event_handler(RAISE_SI
GNAL_EVENT, handler);

540 Changed to
sigaction((RAISE_SIGNAL_EV
ENT, sigact.sa_handler
,NULL);

Commented out
set_ipc_event_handler(TERMIN
ATE_PROCESS_EVENT,
handler);

542 Changed to
sigaction(TERMINATE_PROC
ESS EVENT,
sigact.sa_handler,NULL);

Commented out
set_ipc_event_handler(TERMIN
AL_ATTENTION_EVENT,
handler);

544 Changed to sigaction
(TERMINAL_ATTENTION,
sigact.sa_handler ,NULL);

Commented out
suspend_event(ANY_EVENT,
ONE_TENTH_SECOND,0,NUL
L,NULL,NULL)

189 Replaced with sleep(.1);

Commented out
suspend_event(ANY_EVENT,
ONE_SECOND,0,NULL,NULL,
NULL)

189 Replaced with sleep(1);

 dd.. ssssdd..cc

Compile/link/logical error Location Resolution Remarks
Commented out sys/byteorder.h
Commented out: #define sleep(a)
suspend_event(NO_EVENT,(a)*
ONE_SECOND,
0,NULL,NULL,NULL);

 Will use sleep(a) function

Commented out: the_err =
set_user_group(pwent-
>pw_uid,NO_GROUP_CHANG
E,pwent-
>uid,NO_GROUP_CHANGE);

Line 131 Changed to the_err=setuid(pwent-
>uid);

Commented out: the_err =
set_user_group(orig_uid,NO_G
ROUP_CHANGE,orig_uid,NO_
GROUP_CHANGE);

Line150 Changed to
the_err=setuid(orig_uid);

 ANY_EVENT in function
suspend_event(ANY_EVENT,0,
0,NULL,NULL,NULL) is
undeclared.

Line 181 In message.h file, removed
marco: #if
SUBSYSTEM_DEF==SS_TRUS
TED

 5500

EE.. SSUUMMMMAARRYY

 The changes outlined in this chapter represent the major changes that were made to

the ported modules so that compilation and linking could be executed. After the changes

were made the TCB Extension and SSS servers had basic interoperability, however, MAC

policies could not be enforced.

 5511

THIS PAGE IS INTENTIONALLY LEFT BLANK

 5522

VVII.. CCOONNCCLLUUSSIIOONNSS AANNDD RREECCOOMMMMEENNDDAATTIIOONNSS

AA.. SSUUMMMMAARRYY OOFF FFIINNDDIINNGGSS

The premise of this thesis has shown that the TCB Extension Server and Secure

Session Server can be successfully ported to a Linux Environment. Based upon this port,

these are the findings.

Because the Linux API has some backwards compatibility to the XTS-300 interface,

it readily facilitated many of the services of the XTS-300. Most of the difficulties that were

encountered were due to interfaces requiring services specific to the XTS-300 or when some

CASS functionality depended on Trusted Services.

Now that it has been demonstrated that the Linux environment can run and support

many of the TCB Extension Server and SSS functionalities, many modern OS support of

functionalities such as concurrency, multiprocessor support, etc. can be supported in a future

implementation.

The Linux kernel will need to incorporate some additional internal dependencies in

order to support MAC polices in the TCB Extension Server and Secure Session Server. The

current security policy enforcement in Linux is based upon a minimal DAC policy.

Therefore the current port to Linux does not support the security policy enforcement

required within the MLS LAN project.

 5533

BB.. LLIINNUUXX SSEECCUURRIITTYY PPOOLLIICCYY EENNFFOORRCCEEMMEENNTT CCHHAALLLLEENNGGEESS

There are many challenges in extending Linux’s functionality to support a secure

operating system. The most straightforward attempt would be to use a micro-kernel kernel

based approach. Micro-kernel operating systems demand a very small set of functions from

the kernel, generally including a few synchronization primitives, a simple scheduler, and

interprocess communications mechanisms [Ref. 8]. However even this approach presents

some serious challenges, because of Linux’s current kernel size and hardware abstraction.

The Linux kernel is monolithic. It is a large, complex program, composed of several

logically different components,[Ref. 8], and large kernel data structures. There are

approximately 1.5 million source lines of code in *.c, *.h, and *.S files. Therefore verifying

that the kernel correctly enforces the protection requirements of the security model means

examining all possible violations of kernel security. This would be a daunting task.

Also Linux’s hardware abstraction is designed to support only two execution modes,

user and kernel. There are no intermediate domains that can run trusted processes that

implement trusted functions but do not need to be part of the policy enforcement mechanism

of the kernel. Based upon the current architecture, if trusted processes are to run either the

kernel size has to be increased or the trusted process has to be a user domain process.

CC.. PPEERRFFOORRMMAANNCCEE IISSSSUUEESS

There did not appear to be any degradation in performance of the TCB Extension

Server and SSS when run in the Linux environment. However, quantification of the

performance is imprecise since the XTS-300 is running on Pentium verses a Pentium III in

the Linux environment. Even so, Linux should perform better, because the XTS-300

 5544

implements a security kernel, thus yielding some performance advantages in comparison to

Linux. For example, the XTS-300 adds further intermediate levels (Rings 1,2) between the

user and OS resources causing more explicit message passing. Moreover, it is difficult to

implement a smaller and less complex Linux kernel that can isolate the necessary security

functions (i.e. dependencies exist in the XTS-300 between security and nonsecurity

functions -- CASS and Trusted Software).

DD.. FFUUTTUURREE DDEESSIIGGNN CCOONNSSIIDDEERRAATTIIOONNSS

11.. SSeeccuurriittyy EEnnaabblleedd LLiinnuuxx

A vast amount of research and development has gone into extending UNIX-

like systems to support security needs of various communities. In addition to the XTS-300,

several other UNIX-like systems have been extended to support the U.S. military's desire for

multilevel security.

Research using a Linux-based approach is new. However, there are a few

promising efforts with Linux systems for creating restricted execution environments, with

many different approaches.

The U.S. National Security Agency (NSA) has developed Security-Enhanced Linux

(Flask), which supports defining a security policy in a specialized language and then

enforces that policy.

Medusa DS9, is a free open project that extends Linux by supporting, at the kernel

level, a user-space authorization server. Another open project, LIDS, is a kernel patch and

admin tool to enhance the Linux kernel security by attempting to Implement a reference

monitor concept and MAC policy in the kernel.

 5555

 The Rule Set Based Access Control system for Linux (RSBAC) is based on the

Generalized Framework for Access Control (GFAC) by Abrams and LaPadula and provides

a flexible system of access control based on several kernel modules.

An addition, an NPS effort presents a Linux-based approach to provide system

supporting MAC policies in a Linux environment. This security-enhanced Linux specifies

the implementation of label-based interfaces for the mandatory portions of the Bell and

Lapadula secrecy model and Biba integrity model [Ref. 21].

22.. IIPPSSEECC CCaappaabbiilliitteess

Another goal is to implement IPsec. The results of this effort can be conducted in

the context of a larger research project to provide highly protected communication channels

between Clients and Servers for security critical and mission critical information transfers.

It also follows work from [Ref. 1].

EE.. CCOONNCCLLUUSSIIOONNSS

The port of the TCB Extension Server and SSS to the Linux platform was a success.

The port process came with positive and negative experiences. The TCB Extension Server

and SSS source code was well commented and the debugging code was very useful.

However, knowing what modules and databases to port took a little time. This was based

primarily because of the author’s inexperience with porting software. Using emacs as the

development environment made the work easier. Built in functions such as compilation,

debugging, Current Version System (CVS) and speed-bar were very useful. The overall

experience from this thesis was very positive, thanks to the talented team of NPS personnel

that supported and helped the author.

 5566

AAPPPPEENNDDIIXX AA.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS

Access: A specific type of interaction between a subject and an object that results in the
flow of information from one to the other.

API: Application Programming Interface; the generalized term for a defined software
interface for software applications.

Authenticate: To establish the validity of a claimed security.

Bell-LaPadula Model: A formal state transition model of computer security policy that
describes a set of access control rules. In this formal model, the entities in a computer
system are divided into abstract sets of subjects and objects. The notion of a secure state
is defined and it is proven that each state transition preserves security by moving from
secure state to secure state; thus, inductively proving that the system is secure. A system
state is defined to be "secure" if the only permitted access modes of subjects to objects
are in accordance with a specific security policy. In order to determine whether or not a
specific access mode is allowed, the clearance of a subject is compared to the
classification of the object and a determination is made as to whether the subject is
authorized for the specific access mode.

BSD Berkeley System Distribution: A version of UNIX based on the AT&T System V
UNIX developed by the Computer System Research Group of the University of
California at Berkeley.

Capability: The ability of a process to perform certain functions. This function allows
kernel programs, running as root, to drop all special root privileges or capabilities. For
instance an FTP server could start as root, then drop all root-specific capabilities except
the capability to open low-numbered ports such as port 20, the default FTP-DATA port.

Compartment: Think of a compartment as a container for objects and a permission for
subjects. For instance, if we have a compartment for "unclassified" data, and a
compartment for "secret" data, people with access to the "unclassified" compartment
would not be able to access data labeled as "secret" and visa versa. People with access to
both compartments could access both sets of data.

Data Integrity: The state that exists when computerized data is the same as that in the
source documents and has not been exposed to accidental or malicious alteration or
destruction.

Discretionary Access Control (DAC): Users are able to change the permissions or
compartments of information at their discretion if they have control over the object

 5577

containing the information. For instance a user with administrator access could allow an
unprivileged user access to the system's shadow password file by changing the file
permissions.

Domain: The set of objects that a subject has the ability to access.

Free Software Foundation (FSF): A tax-exempt charity that raises funds for work on
the GNU Project.

GNU General Public License (GPL): The GNU Project was launched in 1984 to
develop a complete Unix-like operating system which is free software: the GNU system.
(GNU is a recursive acronym for ``GNU's Not Unix''; it is pronounced "guh-NEW".)

Host: The generalized term for any device that can be a source or sink of information on
a network. Generally, a host is a single-networked computer.

IETF: Internet Engineering Task Force; the body associated with the Internet that
recommends and approves "standards" for use on the Internet.

IP: Internet Protocol; the network layer (layer 3) of TCP/IP. Network layer addresses are
used by routers for routing purposes.

IPC: Inter-process Communication. Linux supports signals, pipes and the System V IPC
mechanisms named after the UNIX release in which they first appeared.

IPSEC: Internet Protocol Security. An extension to TCP/IP, which allows encryption to
protect all of the traffic between hosts. Free/SWAN is the beginnings of a Linux IPSEC
project.

kernel thread (daemon): a kernel thread is a process that runs in kernel mode. These
processes are properly part of the kernel since they have access to all of the kernel’s data
structures and functions, but they are treated as separate processes that can be suspended
and resumed. Kernel threads do not have virtual memory, but access the same physical
memory as the rest of the kernel.

Mandatory Access Control (MAC) - The system enforces access to information based
on the information’s sensitivity level or other criteria. So if the shadow password file
mentioned above was labeled "Secret", the administrator could not allow a normal
unprivileged user access to the file unless that administrator had special permission to
change the file's attributes.

Object - A passive entity that contains or receives information. Access to an object
potentially implies access to the information it contains. Examples of objects are: records,
blocks, pages, segments, files, directories, directory trees, and programs, as well as bits,
bytes, words, fields, processors, video displays, keyboards, clocks, printers, network
nodes, etc.

 5588

 International Standards Organization (OSI) Model: A seven-layer model of data
communications protocols standardized by the ISO.

Process: A program in execution. It is completely characterized by a single current
execution point (represented by the machine state) and address space.

Rainbow Series - A set of U.S. Government books on information security topics, so-
called because each volume had a different colored cover. Some are available on-line at:
http://www.radium.ncsc.mil/tpep/library/rainbow/

Red Book - The Trusted Networking Implementation (TNI). A criteria for building
TCSEC systems in a network environment, as well as trusted networks.

RFC: Request for Comment; the document that the IETF uses to define standards for use
and recommend practices in the Internet.

setuid, seteuid: The system calls under UNIX and UNIX-like systems such as Linux that
allow a process to change the ID it runs under.

Secure Session Server: A process comprised of a single parent and multiple child
processes for each platform on which a given application protocol is hosted. The Secure
Session Server parent process is responsible for accepting connections from TCBE-
equipped client workstations and establishing the TCP/IP protocol services for the user.
Security Kernel: The hardware, firmware, and software elements of a Trusted
Computing Base that implement the reference monitor concept. It must mediate all
accesses, be protected from modification, and be verifiable as correct.

Security Level: The combination of a hierarchical classification and a set of non-
hierarchical categories that represents the sensitivity of information.

Security Policy: The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information.
Subject: A subject on the system is basically a user, process or other active entity.

System V: A version of UNIX developed by the Bell Laboratories of AT&T..

TCP/IP: The protocol suite used in the Internet. The most important protocol suite used
in networking.

TCB Extension Server: A server process comprised of a single parent and multiple child
processes that are responsible for accepting connections from the TCBE-equipped client
workstations.

 5599

http://www.radium.ncsc.mil/tpep/library/rainbow/

Trojan Horse: A computer program with an apparently or actually useful function that
contains additional (hidden) functions that surreptitiously exploit the legitimate
authorizations of the invoking process to the detriment of security. For example, making
a "blind copy" of a sensitive file for the creator of the Trojan Horse.

Trusted Computer System: A system that employs sufficient hardware and software
integrity measures to allow its use for processing simultaneously a range of sensitive or
classified information.

Trusted Computing Base (TCB): The totality of protection mechanisms within a
computer system -- including hardware, firmware, and software -- the combination of
which is responsible for enforcing a security policy. A TCB consists of one or more
components that together enforce a unified security policy over a product or system. The
ability of a trusted computing base to correctly enforce a security policy depends solely
on the mechanisms within the TCB and on the correct input by system administrative
personnel of parameters (e.g., a user's clearance) related to the security policy.

Trusted Path: A mechanism by which a person at a terminal can communicate directly
with the Trusted Computing Base. This mechanism can only be activated by the person
or the Trusted Computing Base and cannot be imitated by untrusted software.

Trusted Software: The software portion of a Trusted Computing Base.

UNIX: An operating system originally designed at the Bell Laboratories of AT&T in the
1970s

 6600

LLIISSTT OOFF RREEFFEERREENNCCEESS

1. Wilson, J.D. A Trusted Connection Framework for Multilevel Secure
Local Area Networks, Masters Thesis Naval Postgraduate School, June 2000.

2. Schroeder, M. D., Clark, D. D., and Saltzer, J. H., The Multics Kernel

Design Project. Proceeding of sixth ACM symposium on Operating Systems
Principles, November 1977, p. 43 – 56.

3. Stallings, W., Operating Systems, Internals and Design Principles, Third

Edition. Prentice – Hall, Inc. 1998.

4. Shifflett, David, Multi-level Secure Local Area Network Project Design
Document Draft. Naval Postgraduate School Center for Information Systems
Research, May 2000.

5. Schroeder, M.D., Saltzer, J.H., The Protection of Information in Computer

Systems. April 1975.

6. The Linux Kernel Archives. http://www.kernel.org/

7. Lehey, G., Porting UNIX Software From Download to Debug, O’Reilly &
Associates, Inc. 1995.

8. Bovet, Daniel P., Cesati, Marco, Understanding the Linux Kernel,
O’Reilly & Associates, Inc. 2001.

9. Bell, D.E. and LaPadula, L.J. – Secure Computer Systems: Unified
Exposition and Multics Interoperation, MTR-2997 Rev. 1, MITRE Corp., Bedford
Mass., March 1976.

10. Biba, K, Integrity Considerations for Secure Computer Systems, ESD-TR-
76-372 ESD/AFSC,Hanscom AFB, Bedford, MA Apr.1977[NTDS AD A039324].

11. Wang Government Services, Inc., XTS-300 Application Programmer’s

Reference Manual, March, 1998.

12. Wang Government Services, Inc., XTS-300 Trusted Programmer’s
Reference Manual, March, 1998.

13. Paul D. Robertson Serious Security for Linux?
http://www.linuxsecurity.net/feature_stories/feature_story-2.html 2/17/2000 21:59

 6611

14. Carnahan, Lisa, POSIX Security Interfaces and Mechanisms
http://csrc.nist.gov/publications/nistpubs/800-
7/node17.html#SECTION05100000000000000000

15. Department of Defense Trusted Computer System Evaluation Criteria,

 DoD 5200.28-STD, National Computer Security Center, December 1985.

16. Alessandro Rubini, Making System Calls from Kernel Space, Linux
Magazine, http://www.linux-mag.com/2000-11/gear_01.html, November 2000.

17. Wang Government Services, Inc., XTS-300 Release 4.4.2, 31 March,
1998.

18. Stevens, Richard W., Advanced Programming in the Unix Environment,
Addison-Wesley, Reading, MA. 1993.

19. Common Criteria for Information Technology Security Evaluation Version
2.1, Common Criteria Project Sponsoring Organizations, August, 1999

20. Garfinkal, S., Spafford, G., Practical Unix and Internet Security, Oreilly
and Associates Inc, Cambridge, MA. 1996

21. Clark, Paul C., A Linux Based Approach to Low –Cost Support of Access

Control Policies, Masters Thesis, Naval Postgraduate School, September 1999.

22. Bach, Maurice J., The Design of the Unix Operating System, Prentice Hall,
Englewood Cliffs, NJ. 1990.

 6622

http://www.linux-mag.com/2000-11/gear_01.html

IINNIITTIIAALL DDIISSTTRRIIBBUUTTIIOONN LLIISSTT

1. Defense Technical Information Center
 8725 John J. Kingman Road, Suite 0944
 Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
 Naval Postgraduate School
 411 Dyer Road
 Monterey, CA 93943-5101

3. Carl Siel
 Space and Naval Warfare Systems Center
 PMW 161
 Building OT-1, Room 1024
 4301 Pacific Highway
 San Diego, CA 92110-3127
 sielc@spawar.navy.mil

4. Commander, Naval Security Group Command
 Naval Security Group Headquarters
 9800 Savage Road
 Suite 6585
 Fort Meade, MD 20755-6585
 San Diego, CA 92110-3127

5. Ms. Deborah M. Cooper
 Deborah M. Cooper Company

P.O. Box 17753
Arlington, VA 22216
d.cooper@computer.org

6. Ms. Louise Davidson
 N643

Presidential Tower 1
 2511 South Jefferson Davis Highway
 Arlington, VA 22202
 davidson.louise@hq.navy.mil

7. Mr. William Dawson
 Community CIO Office

Washington DC 20505
williamf@odci.gov

 6633

mailto:sielc@spawar.navy.mil
mailto:d.cooper@computer.org
mailto:davidson.louise@hq.navy.mil
mailto:williamf@odci.gov

8. Ms. Deborah Phillips
 Community Management Staff
 Community CIO Office
 Washington DC 20505
 deborlp@odci.gov

9. Capt. James Newman
 N64
 Presidential Tower 1
 2511 South Jefferson Davis Highway
 Arlington, VA 22202
 Newman.James@HQ.NAVY.MIL

10. Major Dan Morris
 HQMC
 C4IA Branch
 TO: Navy Annex
 Washington, DC 20380
 MorrisDE@hqmc.usmc.mil

11. Mr. Richard Hale 1
 Defense Information Systems Agency, Suite 400
 5600 Columbia Pike
 Falls Church, VA 22041-3230
 haler@ncr.disa.mil

12. Ms. Barbara Flemming 1
 Defense Information Systems Agency, Suite 400

5600 Columbia Pike
Falls Church, VA 22041-3230
flemingb@ncr.disa.mil

13. Mr. Michael Green, Director
 Public Key Infrastructure Program Management Office

National Security Agency
 9800 Savage Road
 Ft. Meade, Maryland 20775
 rmgree2@missi.ncsc.mil

14. Dr. Cynthia E. Irvine
 Computer Science Department

Code CS/IC
Naval Postgraduate School
Monterey, CA 93943
irvine@cs.nps.navy.mil

 6644

mailto:deborlp@odci.gov
mailto:Newman.James@HQ.NAVY.MIL
mailto:MorrisDE@hqmc.usmc.mil
mailto:haler@ncr.disa.mil
mailto:flemingb@ncr.disa.mil
mailto:rmgree2@missi.ncsc.mil
mailto:irvine@cs.nps.navy.mil

15. Mr. Daniel Warren
 Computer Science Department
 Code CS/Wd
 Naval Postgraduate School
 Monterey, CA 93943
 warren@cs.nps.navy.mil

16. LCDR Mark Glover

1637 Legaye Ave.
Cardiff, CA. 92007
mvglov@aol.com

17. Mr. Aaron Judd
 judda@spawar.navy.mil

18. David Shifflett

Computer Science Department
Code CS/Z

 Naval Postgraduate School
 Monterey, CA 93943
 shifflett@cs.nps.navy.mil

 6655

mailto:irvine@cs.nps.navy.mil
mailto:mvglov@aol.com
mailto:judda@spawar.navy.mil
mailto:shifflett@cs.nps.navy.mil

